# Two-dimensional spatial patterning in developmental systems

Keiko U. Torii





# Is pigment patterning in fish skin determined by the Turing mechanism?

#### Masakatsu Watanabe and Shigeru Kondo

Graduate School of Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan



## *Hox* Genes Regulate Digit Patterning by Controlling the Wavelength of a Turing-Type Mechanism

Rushikesh Sheth,<sup>1</sup>\*† Luciano Marcon,<sup>2,3</sup>\* M. Félix Bastida,<sup>1,4</sup> Marisa Junco,<sup>1</sup> Laura Quintana,<sup>2,3</sup> Randall Dahn,<sup>5</sup> Marie Kmita,<sup>6</sup>‡ James Sharpe,<sup>2,3,7</sup>‡ Maria A. Ros<sup>1,4</sup>‡





## Using Engineered Scaffold Interactions to Reshape MAP Kinase Pathway Signaling Dynamics

Caleb J. Bashor,<sup>1,2</sup> Noah C. Helman,<sup>1</sup> Shude Yan,<sup>1</sup> Wendell A. Lim<sup>1</sup>\*



## Secreting and Sensing the Same Molecule Allows Cells to Achieve Versatile Social Behaviors

Hyun Youk<sup>1,2</sup> and Wendell A. Lim<sup>1,2,3</sup>\*

# A Addition of positive feedback link







#### A synthetic approach reveals extensive tunability of auxin signaling

Kyle A. Havens<sup>1</sup>, Jessica M. Guseman<sup>1</sup>, Seunghee S. Jang<sup>1</sup>, Edith Pierre-Jerome<sup>1</sup>, Nick Bolten, Eric Klavins<sup>\*</sup>, Jennifer L. Nemhauser<sup>\*</sup>





# Synthetic Cell to Cell Communication



A. Khakhar, N. Bolten, J. Nemhauser, and E. Klavins. 2015

Auxin Meets CRISPR ╺╘<u>╼</u>┚ ╶╤╶╴╤╴

RECV



**SEND** 



A. tumefaciens attached to a carrot cell (Wikipedia)



Time (minutes)

### Cooperativity To Increase Turing Pattern Space for Synthetic Biology

Luis Diambra,\*<sup>,†,§</sup> Vivek Raj Senthivel,<sup>‡,§</sup> Diego Barcena Menendez,<sup>‡,§</sup> and Mark Isalan<sup>\*,‡,§</sup>

- What do we need to get activator inhibitor patterning ?
- Faster diffusion of the inhibitor than the activator
- High cooperativity/non-linearity
- Faster degradation of the activator
- ...

# Using Engineered Scaffold Interactions to Reshape MAP Kinase Pathway Signaling Dynamics

Caleb J. Bashor,<sup>1,2</sup> Noah C. Helman,<sup>1</sup> Shude Yan,<sup>1</sup> Wendell A. Lim<sup>1\*</sup>



# Using Engineered Scaffold Interactions to Reshape MAP Kinase Pathway Signaling Dynamics

Caleb J. Bashor,<sup>1,2</sup> Noah C. Helman,<sup>1</sup> Shude Yan,<sup>1</sup> Wendell A. Lim<sup>1\*</sup>



## Secreting and Sensing the Same Molecule Allows Cells to Achieve Versatile Social Behaviors

Hyun Youk<sup>1,2</sup> and Wendell A. Lim<sup>1,2,3</sup>\*

# A Addition of positive feedback link & signal degradation (Bar1)



| molecule                              | measured context                           | diffusion coefficient<br>(µm²/s)                             | BNID           |
|---------------------------------------|--------------------------------------------|--------------------------------------------------------------|----------------|
| H <sub>2</sub> O                      | water                                      | 2000                                                         | 104087, 106703 |
| H <sub>2</sub> O                      | nucleus of chicken erythrocyte             | 200                                                          | 104645         |
| $H^+$ (from $H_3O^+$ to $H_2O$ )      | water                                      | 7000                                                         | 106702         |
| 0 <sub>2</sub>                        | water                                      | 2000                                                         | 104440         |
| CO <sub>2</sub>                       | water                                      | 2000                                                         | 102625         |
| tRNA (≈20 kDa)                        | water                                      | 100                                                          | 107933, 107935 |
| protein (≈30 kDa GFP)                 | water                                      | 100                                                          | 100301         |
| protein (≈30 kDa GFP )                | eukaryotic cell (CHO) cytoplasm            | 30                                                           | 101997         |
| protein (≈30 kDa GFP )                | rat liver mitochondria                     | 30                                                           | 100300         |
| protein (NLS-EGFP)                    | cytoplasm of <i>D. melanogaster</i> embryo | 20                                                           | 109209         |
| protein (≈30 kDa )                    | E. coli cytoplasm                          | 7-8                                                          | 100193, 107985 |
| protein (≈40 kDa )                    | <i>E. coli</i> cytoplasm                   | 2-4                                                          | 107985         |
| protein (≈70-250 kDa )                | <i>E. coli</i> cytoplasm                   | 0.4-2                                                        | 107985         |
| protein (≈140 kDa Tar-YFP)            | <i>E. coli</i> membrane                    | 0.2                                                          | 107985         |
| protein (≈70 kDa LacY-YFP)            | E. coli membrane                           | 0.03                                                         | 107985         |
| fluorescent dye (carboxy-fluorescein) | A. thaliana cell wall                      | 30                                                           | 105033         |
| fluorescent dye (carboxy-fluorescein) | A. thaliana mature root epidermis          | 3                                                            | 105034         |
| transcription factor (Lacl)           | movement along DNA (1D, in vitro)          | 0.04<br>(4×10 <sup>5</sup> bp <sup>2</sup> s <sup>-1</sup> ) | 102036         |
| morphogen (bicoid-GFP)                | cytoplasm of D. melanogaster embryo        | 7                                                            | 109199         |
| morphogen (wingless)                  | wing imaginal disk of D. melanogaster      | 0.05                                                         | 101072         |
| mRNA                                  | HeLa nucleus                               | 0.03-0.10                                                    | 107613         |
| mRNA                                  | various localizations and sizes            | 0.005-1                                                      | 110667         |
| ribosome                              | E. coli                                    | 0.04                                                         | 108596         |

# A chemical approach to designing Turing patterns in reaction-diffusion systems

(pattern formation/nonlinear dynamics)

ISTVÁN LENGYEL\*<sup>†</sup> AND IRVING R. EPSTEIN\*<sup>‡</sup>

$$X + S \rightleftharpoons SX, \quad K = \frac{sx}{s \cdot x} = \frac{k_+}{k_-}, \quad K' = Ks_0.$$
 [2]

If the spatial distribution of S is uniform, the new reactiondiffusion system is described by

$$\frac{\partial x}{\partial t} = f(x, y, p) - k_+ s_0 x + k_- s x + D_x \frac{\partial^2 x}{\partial z^2}$$
 [3a]

$$\frac{\partial y}{\partial t} = g(x, y, p) + D_y \frac{\partial^2 y}{\partial z^2}$$
 [3b]

$$\frac{\partial sx}{\partial t} = k_+ s_0 x - k_- sx.$$
 [3c]